首页> 外文OA文献 >Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases
【2h】

Efficient Subgraph Similarity Search on Large Probabilistic Graph Databases

机译:大概率图的高效子图相似性搜索   数据库

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many studies have been conducted on seeking the efficient solution forsubgraph similarity search over certain (deterministic) graphs due to its wideapplication in many fields, including bioinformatics, social network analysis,and Resource Description Framework (RDF) data management. All these worksassume that the underlying data are certain. However, in reality, graphs areoften noisy and uncertain due to various factors, such as errors in dataextraction, inconsistencies in data integration, and privacy preservingpurposes. Therefore, in this paper, we study subgraph similarity search onlarge probabilistic graph databases. Different from previous works assumingthat edges in an uncertain graph are independent of each other, we study theuncertain graphs where edges' occurrences are correlated. We formally provethat subgraph similarity search over probabilistic graphs is #P-complete, thus,we employ a filter-and-verify framework to speed up the search. In thefiltering phase,we develop tight lower and upper bounds of subgraph similarityprobability based on a probabilistic matrix index, PMI. PMI is composed ofdiscriminative subgraph features associated with tight lower and upper boundsof subgraph isomorphism probability. Based on PMI, we can sort out a largenumber of probabilistic graphs and maximize the pruning capability. During theverification phase, we develop an efficient sampling algorithm to validate theremaining candidates. The efficiency of our proposed solutions has beenverified through extensive experiments.
机译:由于其在许多领域(包括生物信息学,社交网络分析和资源描述框架(RDF)数据管理)中的广泛应用,因此已经进行了许多研究,以寻求对某些(确定性)图进行子图相似性搜索的有效解决方案。所有这些工作都假定基础数据是确定的。但是,实际上,由于各种因素(例如数据提取错误,数据集成不一致和隐私保护目的),图形通常是嘈杂的和不确定的。因此,在本文中,我们研究大型概率图数据库上的子图相似性搜索。与先前的工作(假设不确定图中的边彼此独立)不同,我们研究了与发生边相关的不确定图。我们正式证明概率图上的子图相似性搜索是#P完全的,因此,我们采用了过滤验证框架来加快搜索速度。在过滤阶段,我们基于概率矩阵指数PMI来确定子图相似性概率的上下限。 PMI由与子图同构概率的上下限紧密相关的区分子图特征组成。基于PMI,我们可以整理出大量的概率图并最大化修剪能力。在验证阶段,我们开发了一种有效的采样算法来验证其余候选者。我们提出的解决方案的效率已通过广泛的实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号